BAYESIAN SURVEILLANCE FOR DETECTION OF SMALL AREA HEALTH ANOMALIES

Andrew B. Lawson Ana Corberán-Vallet

Medical University of South Carolina University of Valencia

BACKGROUND

Bayesian modeling

The surveillance task

> Bayesian modeling of spatio-temporal health data

- \geq Risk models
- > Model fitting: MCMC and INLA
- Prospective fitting issues

BAYESIAN MODELING

Bayesian models consist of two components:

- Likelihood for the data
- Prior distributions for the parameters

These are combined to form a *posterior distribution* for the parameters

Pr(parameters data)	$\propto L(data \mid parameters)$). Pr(parameters)
posterior	likelihood	priors

THE SURVEILLANCE TASK

Public health surveillance is the focus

Health data usually consist of aggregated counts of disease within small areas (counties, districts, postal codes,...)

Surveillance is essentially about change

> There are a number of things we focus on:

- Development of clusters
- Changes in trend
- Geographical spread and jump diffusion
- Detection of initiation of epidemics

> This has a huge impact on how we go about modeling

BAYESIAN MODELING OF SPATIO-TEMPORAL HEALTH DATA

Count outcome in *m* small areas

$$\{\mathcal{Y}_i\}_{i=1,2,\ldots,m}$$

Poisson likelihood model

$$y_i \sim Po(\mu_i = e_i \, \theta_i)$$

e_i: expected count of disease representing the background population effect (fixed)

 θ_i : unknown area-specific relative risk (focus of study)

BAYESIAN MODELING OF SPATIO-TEMPORAL HEALTH DATA

Simple estimate of the relative risk: standardized incidence ratio (SIR), defined as the ratio of observed to expected counts

$$\hat{\theta}_i = y_i / e_i$$

This is a crude estimator and sometimes difficult to interpret and unstable

> We can assign a prior on θ_i or we can model its logarithm. The data likelihood forms a hierarchy with the parameter priors to give a hierarchical model (Bayesian hierarchical model)

RELATIVE RISK MODELS

 $log(\mu_i) = log(e_i) + log(\theta_i)$ $log(\theta_i) =model terms$

- A) Intercept (constant) model
- B) Log-normal (random intercept) model
- C) GLMM
- D) Convolution model

RELATIVE RISK MODELS

D) Convolution model: Special case of GLMM that includes spatial correlation

$$\log(\theta_i) = \rho + u_i + v_i$$

 ρ : overall level of the relative risk

convolution

 $\boldsymbol{u}_{i^{\text{i}}}$ spatially structured effect

 $\mathbf{v}_i\!\!:$ spatially unstructured extra variation

Adding covariates is straightforward:

$$\log(\theta_i) = \rho + \alpha_1 x_{1i} + u_i + v_i$$

RELATIVE RISK MODELS

The improper CAR model

$$u_{i} \mid u_{j \neq i} \sim N\left(\frac{1}{\mid n_{i} \mid} \sum_{j \in n_{i}} u_{j}, \frac{\sigma_{u}^{2}}{\mid n_{i} \mid}\right)$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) = 0$$

$$(1 + 1) =$$

MODEL FITTING: MCMC AND INLA

Conventionally Markov chain Monte Carlo is used to estimate posterior quantities for Bayesian models (such as the convolution or log-normal models)

- > WinBUGS is designed to do this via two basic methods
 - Gibbs sampling
 - > Metropolis –Hastings

Approximation of posterior distributions has recently become available via Laplace approximation in the INLA package

- > Does not require iterative computation (unlike McMC)
- Fast computation

PROSPECTIVE FITTING ISSUES

Refitting at each new time point?

- Could be computationally poor
- Could use surveillance residuals

> Evolving model fitting

- Endemic-epidemic approach
- Particle filtering
 - Resampling parameter values given new data

(Lawson and Kleinman, 2005, ch 4, ch 5)

OUR WORK

BAYESIAN DISEASE SURVEILLANCE

Posterior $p(A|B) = \frac{p(B|A)p(A)}{p(A)}$

Prior Likelihood probability p(B)

OBJECTIVE

Monthly counts of Salmonellosis cases in SC (1995-2003)

HOW?

By using a model-based surveillance technique that incorporates both temporal and spatial information

Idea: Use a statistical model to describe the overall behavior of disease in space and time under 'normal' conditions

and

detect unusual departures from predictable patterns based on the estimated model

ADVANTAGES

> Models: - allow covariate effects to be estimated

- provide insight into etiology, spread, prediction and control of disease

> The use of spatial information increases the power to detect small localized outbreaks of disease

Spatial distribution of the SMR from August to October 1996

OUTLINE

> Univariate scenario

- > Model: The convolution model
- Surveillance technique: SCPO
- Case study: Salmonellosis

> Multivariate scenario

- > Model: The shared component model
- Surveillance technique: MSCPO
- Case study: ERD for respiratory diseases

> Can we go one step forward and anticipate disease outbreaks?

Syndromic information

> Monitor a map of m small areas over T time periods

$$\{y_{it}\}\ i=1,2,...,m;t=1,2,...,T$$

Bayesian hierarchical Poisson count model

$$y_{it} \sim Po(e_{it} \, \theta_{it})$$

e_{it}: expected counts of disease (background population effect)

 θ_{it} : unknown area-specific relative risks

Convolution model (Besag et al., 1991, Lawson, 2013) vs

 $\log(\theta_{it}) = \rho + u_i + v_i$

ho: overall level of the relative risk; $ho \sim N(0, \sigma_
ho^2)$

u_i: spatially structured extra variation (improper CAR)

$$u_i \mid u_{j \neq i} \sim N\left(\frac{1}{\mid n_i \mid} \sum_{j \in n_i} u_j, \frac{\sigma_u^2}{\mid n_i \mid}\right)$$

 v_i : spatially unstructured extra variation; $v_i \sim N(0, \sigma_v^2)$ δ_{it} : space-time interaction random effect; $\delta_{it} \sim N(0, \sigma_\delta^2)$

ISDS WEBINAR JULY 28TH 2016

Spatio-temporal model (knorr-Held, 2000)

$$\log(\theta_{it}) = \rho + u_i + v_i + \delta_{it}$$

> We ran a simulation scenario (details in Corberán-Vallet and Lawson, 2011) to compare both models

In terms of sensitivity, specificity and median time to detection, the convolution model outperformed the spatio-temporal model

In a surveillance context:

- > The model must describe the behavior of disease under endemic conditions
- It must be sensitive to temporal changes in the RR pattern of disease. A too complex model may absorb changes in risk in the model fit

> For seasonal data, in order to detect counts of disease higher than expected:

$$\log(\theta_{it}) = \rho + u_i + v_i + \sum_{s=1}^{12} \alpha_s I_s(t)$$

 α_s : seasonal effects

I_s(t): indicator function that takes the value 1 if time t corresponds to month s

> Different risks to account for seasonality, but the risks so defined are constant over time

UNIVARIATE SCENARIO: SURVEILLANCE TECHNIQUE

Surveillance Conditional Predictive Ordinate (Corberán-Vallet and Lawson, 2011)

$$SCPO_{it} = f(y_{it} | y_{1:t-1}) = \int f(y_{it} | \theta_i, y_{1:t-1}) \pi(\theta_i | y_{1:t-1}) d\theta_i$$

$$\approx \frac{1}{J} \sum_{j=1}^{J} Po(y_{it} | e_{it} \theta_i^{(j)})$$

$$\left\{\boldsymbol{\theta}_{i}^{(j)}\right\}_{j=1}^{J} \sim \boldsymbol{\pi}(\boldsymbol{\theta}_{i} \mid \boldsymbol{y}_{1:t-1})$$

If $SCPO_{it} < \alpha$ \implies signal an alarm for area i

* See also: Surveillance Kullback
Liebler divergence (SKL)
(Rotejanaprasert and Lawson,
2016). Extension of the SCPO and
behaves differently.

Monthly counts of Salmonellosis cases in SC (1995-2003)

Number of counties signaling an alarm at each time point during the surveillance period (1996-2003). Data for year 1995 used to estimate the model.

Decision rule SCPO < 0.08

	J	F	Μ	А	Μ	J	J	А	S	0	Ν	D
1996	1	0	2	2	1	1	0	3	3	5	2	3
1997	0	3	2	2	4	2	5	2	0	1	0	1
1998	2	0	0	3	1	1	3	3	3	2	2	3
1999	0	1	2	2	1	1	3	2	0	0	2	0
2000	2	1	3	0	1	5	2	1	1	1	3	1
2001	2	5	3	2	1	1	1	2	1	1	0	1
2002	1	1	1	2	0	1	3	6	4	5	5	2
2003	1	0	0	0	2	2	1	2	4	3	0	2

Spatial distribution of the SMR from August to October 1996

Greenville County

Temporal plots for Greenville and Spartanburg counties

Red points represent alarms

MULTIVARIATE SCENARIO

> Surveillance systems are often focused on more than one disease within a predefined area

A common approach is to monitor each disease separately: any correlation between diseases is ignored

> We present a multivariate extension of the proposed surveillance technique that

> allows for correlation between diseases

> can detect outbreaks happening in either one or a combination of diseases

A possibility to jointly model the endemic behavior of the multiple diseases is the shared component model (knorr-Held and Best, 2001)

For the joint analysis of $k \ge 2$ diseases, Held el al. (2005) proposed a generalized SCM (only spatial information)

Our shared component model formulation:

$$y_{itk} \sim Po(e_{itk} \theta_{ik})$$
$$\log(\theta_{ik}) = \rho_k + \sum_{l=1}^{L} \phi_{l,k} \delta_{l,k} w_{l,i} + \psi_{ik}$$

 ρ_k : overall risk for disease k

L: number of spatial fields (CAR components) $w_l = (w_{l,1}, w_{l,2}, ..., w_{l,m})$ $\phi_{l,k} = 1$ if w_l has an influence on disease k, and $\phi_{l,k} = 0$ otherwise $\delta_{l,k}$: weight ψ_{ik} : spatial unstructured extra variation for disease k

Advantage: By using indicator variables, we do not have to specify the structure of the model in advance

MULTIVARIATE SCENARIO: SURVEILLANCE TECHNIQUE

For each small area *i* and time period *t*

 θ_{ik} : posterior relative risk estimated at the previous time period (data up to time t-1)

 $(y_{itk_1} \quad y_{itk_2} \quad \dots \quad y_{itk_r})$

counts higher than expected counts smaller than expected

MULTIVARIATE SCENARIO: SURVEILLANCE TECHNIQUE

A multivariate extension of the surveillance conditional predictive ordinate can be defined as (Corberán-Vallet, 2012)

$$\begin{split} MSCPO_{it} &= f(y_{itk_{1}}, y_{itk_{2}}, \dots, y_{itk_{r}} \mid y_{1:t-1}) \\ &= \iint \dots \int f(y_{itk_{1}}, y_{itk_{2}}, \dots, y_{itk_{r}} \mid \theta_{ik_{1}} \mid \theta_{ik_{2}} \dots \mid \theta_{ik_{r}}) x \\ &\qquad \pi(\theta_{ik_{1}}, \theta_{ik_{2}}, \dots, \theta_{ik_{r}} \mid y_{1:t-1}) d\theta_{ik_{1}} d\theta_{ik_{2}} \dots d\theta_{ik_{r}} \\ &\approx \frac{1}{J} \sum_{j=1}^{J} Po(y_{itk_{1}} \mid e_{itk_{1}} \theta_{ik_{1}}^{(j)}) Po(y_{itk_{2}} \mid e_{itk_{2}} \theta_{ik_{2}}^{(j)}) \dots Po(y_{itk_{r}} \mid e_{itk_{r}} \theta_{ik_{r}}^{(j)}) \end{split}$$

 $\{\theta_{ik}^{(j)}\}_{j=1}^{J}$ set of RR sampled from the posterior distribution at time t-1

If $MSCPO_{it} < \alpha$ \longrightarrow signal an alarm for area i

Weekly emergency room discharges for respiratory diseases in South Carolina in 2009

- ➢ We confine our analysis to data collected from week beginning June 28 to week beginning December 27 (weeks 26 − 52 in previous figure)
- > 46 counties, 27 time periods, and 5 diseases
- > Expected counts (constant) are calculated using the data from the first 3 weeks
- > These data are also used to estimate the proposed SCM (we assume L = 10)
- > The estimated model contains 5 spatial fields

Structure of the estimated model

 $\log(\theta_{i1}) = \rho_{1} + \delta_{1,1} w_{1,i} + \delta_{2,1} w_{2,i} + \psi_{i1}$ $\log(\theta_{i2}) = \rho_{2} + \delta_{3,2} w_{3,i} + \psi_{i2}$ $\log(\theta_{i3}) = \rho_{3} + \delta_{1,3} w_{1,i} + \psi_{i3}$ $\log(\theta_{i4}) = \rho_{4} + \delta_{1,4} w_{1,i} + \delta_{4,4} w_{4,i} + \psi_{i4}$ $\log(\theta_{i5}) = \rho_{5} + \delta_{1,5} w_{1,i} + \delta_{5,5} w_{5,i} + \psi_{i5}$

Goodness of fit: DIC (pD) for the proposed shared component model and five independent convolution models

Model	Disease 1	Disease 2	Disease 3	Disease 4	Disease 5	Total
Proposed SCM	808.18	268.04	578.84	657.64	652.43	2965.13
	(39.85)	(20.06)	(32.07)	(33.22)	(32.27)	(157.46)
Convolution models	810.30	268.24	584.29	659.17	656.17	2978.16
	(40.80)	(19.92)	(33.88)	(33.86)	(32.62)	(161.08)

 \succ For $t = 4, 5, \dots, 27$, the SCM is estimated using the data observed up to t-1

MSCPO values associated with the new data are analyzed to detect epidemic onsets

> An alarm for the *i* th county is sounded at time *t* if the MSCPO_{it} < 0.05

Counts of disease detected as unusual are assumed to be missing when they become part of the history

<u>A comparison with the multivariate scan</u> <u>statistic</u>: Counties where an outbreak is declared

Left: Areas signaling an alarm based on the MSCPO

Right: Most likely cluster (MLC) and secondary clusters (SC) using the Poissonbased prospective space-time scan statistic

MULTIVARIATE SCENARIO: A COMPARISON

> The space-time scan statistic pinpoints the general time and location of the most likely cluster (and possible secondary clusters)

- > Drawbacks:
 - Counties with no increased incidence can be included in the cluster
 - Some counties do not undergo an outbreak of disease for all the diseases reported in the cluster
 - Several large clusters covering practically all the study region are reported

> The MSCPO detects, at each time, counties with increased disease incidence and the diseases causing the alarm within each county

It enables a timelier and more informed response

CAN WE ANTICIPATE DISEASE OUTBREAKS?

> We have developed a model-based surveillance technique to detect disease outbreaks as soon as possible

> But... can we predict disease outbreaks before they occur?

> The answer is based on the use of syndromic information

However, we do not want to monitor syndromes or health-related data that precede diagnosis (these data can lead to false alarms)

We want to develop a multivariate model that models both the disease of interest and syndromic information and helps to predict possible outbreaks

CAN WE ANTICIPATE DISEASE OUTBREAKS? A FIRST ATTEMPT

The disease of interest is an infectious disease and we have information from a syndromic disease

 $y_{it} \sim Po(\mu_{it} + I_{it})$

We want a model like this for the infection of interest

endemic component: describes the pattern of disease during non-epidemic periods epidemic component: expected additive increase in disease counts due to an epidemic (depends on syndromic information)

CAN WE ANTICIPATE DISEASE OUTBREAKS? A FIRST ATTEMPT

y_{it}: number of cases of the disease of interest

 $y_{it} \sim Po(\mu_{it} + I_{it})$ $\mu_{it} = e_{it}\theta_{it}$ $\log(\theta_{it}) = \rho + u_i + v_i$

y_{it}^s: number of cases of the syndromic disease

 $y_{it}^{s} \sim Po(\mu_{it}^{s} + I_{it}^{s})$ $\mu_{it}^{s} = e_{it}^{s} \theta_{it}^{s}$ $\log(\theta_{it}^{s}) = \rho^{s} + \psi u_{i} + v_{i}^{s}$

during non-epidemic conditions, the two diseases may be influenced by common confounding factors (Wang and Wall, 2003). Here $\psi \sim N(0, \sigma_w^2)$

CAN WE ANTICIPATE DISEASE OUTBREAKS? A FIRST ATTEMPT

y_{it}: number of cases of the disease of interest

y_{it}^s: number of cases of the syndromic disease

$$y_{it} \sim Po(\mu_{it} + I_{it}) \qquad \qquad y_{it}^{s} \sim Po(\mu_{it}^{s} + I_{it}^{s})$$

$$(I_{it}) = \beta_{it} \left(y_{i,t-1} + \gamma_{i} \sum_{j \in n_{i}} y_{j,t-1} \right) + \phi_{i} I_{i,t-1}^{s} \qquad \qquad I_{it}^{s} = \beta_{it}^{s} \left(y_{i,t-1}^{s} + \gamma_{i}^{s} \sum_{j \in n_{i}} y_{j,t-1}^{s} \right)$$

Component based on data up to time t-1. At time t we can make predictions for time t+1

CONCLUDING REMARKS

> We have presented a Bayesian model-based surveillance technique for on-line spatio-temporal public health surveillance

As a local measure, different alarms are sounded for those areas of increased disease incidence

It can be applied in any surveillance context where a model is used to describe the endemic behavior of diseases

> Simple spatial models are the key to allowing detection of change over time

CONCLUDING REMARKS

 \succ The technique can be easily extended for the monitoring of multiple diseases

> The proposed SCM allows us to identify the number of latent spatial fields required to describe the correlation across both areas and diseases

> The multivariate surveillance technique improves outbreak detection when changes in disease incidence happen simultaneously

> Finally, we have presented a model that incorporates syndromic information to predict the start of epidemics

Some preliminary results obtained in a prospective analysis of infectious disease data showed its good performance

REFERENCES

- Besag J, York J and Mollié A. Bayesian image restoration, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics 1991; 43: 1-59
- Rotejanaprasert, C. and Lawson, A. B. (2016) Bayesian prospective detection of small area health anomalies using Kullback– Leibler divergence. Statistical Methods in Medical Research (to appear)
- Corberán-Vallet A. Prospective surveillance of multivariate spatial disease data. Statistical Methods in Medical Research 2012; 21: 457-477
- Corberán-Vallet A and Lawson AB. Conditional predictive inference for online surveillance of spatial disease incidence. Statistics in Medicine 2011; 30: 3095-3116
- Knorr-Held L. Bayesian modelling of inseparable space-time variation in disease risk. Statistics in Medicine 2000; 19: 2555-2567
- Knorr-Held L and Best NG. A shared component model for detecting joint and selective clustering of two diseases. Journal of the Royal Statistical Society, series A 2001; 164: 73-85
- Held L, Natário I, Fenton SE, Rue H and Becker N. Towards joint disease mapping. Statistical Methods in Medical Research 2005; 14: 61-82
- Lawson, A. B. (2013) Bayesian Disease Mapping: hierarchical modeling in Spatial Epidemiology 2nd Ed CRC Press, New York.
- Lawson, A. B. And Kleinman, K. (eds) (2005) Spatial & Syndromic Surveillance for Pubic Health. Wiley, New York

Wang F and Wall MM. Generalized common spatial factor model. Biostatistics 2003; 4: 569-582