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BACKGROUND

¾ Bayesian modeling 

¾ The surveillance task

¾ Bayesian modeling of spatio-temporal health data

¾ Risk models
¾ Model fitting: MCMC and INLA
¾ Prospective fitting issues 
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BAYESIAN MODELING

Bayesian models consist of two components:

� Likelihood for the data
� Prior distributions for the parameters

These are combined to form a posterior distribution for the parameters
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THE SURVEILLANCE TASK

¾ Public health surveillance is the focus 

¾ Health data usually consist of aggregated counts of disease within small areas 
(counties, districts, postal codes,…) 

¾ Surveillance is essentially about change

¾ There are a number of things we focus on:
� Development of clusters

� Changes in trend

� Geographical spread and jump diffusion

� Detection of initiation of epidemics

¾ This has a huge impact on how we go about modeling
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BAYESIAN MODELING OF SPATIO-TEMPORAL 
HEALTH DATA
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Count outcome in m small areas

Poisson likelihood model

ei :  expected count of disease representing the             
background population effect (fixed)

θi :  unknown area-specific relative risk (focus of study)
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BAYESIAN MODELING OF SPATIO-TEMPORAL 
HEALTH DATA

¾ Simple estimate of the relative risk: standardized incidence ratio (SIR), defined as the ratio of 
observed to expected counts

This is a crude estimator and sometimes difficult to interpret and unstable 

¾We can assign a prior on θi or we can model its logarithm. The data likelihood forms a 
hierarchy with the parameter priors to give a hierarchical model (Bayesian hierarchical model)
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RELATIVE RISK MODELS 

A) Intercept (constant) model 

B) Log–normal (random intercept) model

C) GLMM

D) Convolution model 
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RELATIVE RISK MODELS

D) Convolution model: Special case of GLMM that includes spatial correlation

ρ: overall level of the relative risk

ui: spatially structured effect   

vi: spatially unstructured extra variation

Adding covariates is straightforward:
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RELATIVE RISK MODELS
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The improper CAR model
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MODEL FITTING: MCMC AND INLA

¾ Conventionally Markov chain Monte Carlo is used to estimate posterior quantities 
for Bayesian models (such as the convolution or log-normal models)

¾WinBUGS is designed to do this via two basic methods
¾ Gibbs sampling
¾ Metropolis –Hastings 

¾ Approximation of posterior distributions has recently become available via Laplace 
approximation in the INLA package 
¾ Does not require iterative computation (unlike McMC)
¾ Fast computation

ISDS WEBINAR JULY 28TH 2016



PROSPECTIVE FITTING ISSUES

¾ Refitting at each new time point?
� Could be computationally poor
� Could use surveillance residuals

¾ Evolving model fitting
� Endemic-epidemic approach

¾ Particle filtering
� Resampling parameter values given new data

(Lawson and Kleinman, 2005, ch 4, ch 5)
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OUR WORK
BAYESIAN DISEASE 
SURVEILLANCE
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OBJECTIVE

¾ Detect disease outbreaks as soon as possible

Monthly counts of Salmonellosis cases in SC (1995-2003)
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HOW?

¾ By using a model-based surveillance technique that incorporates                 
both temporal and spatial information

¾ Idea: Use a statistical model to describe the overall behavior 
of disease in space and time under ‘normal’ conditions 

and

detect unusual departures from predictable patterns 
based on the estimated model
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ADVANTAGES

¾ Models:  - allow covariate effects to be estimated

- provide insight into etiology, spread, prediction and control of disease

¾ The use of spatial information increases the power to detect small localized outbreaks 
of disease

Spatial distribution of the SMR from August to October 1996
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OUTLINE 
¾ Univariate scenario
¾ Model: The convolution model

¾ Surveillance technique: SCPO

¾ Case study: Salmonellosis

¾ Multivariate scenario
¾ Model: The shared component model

¾ Surveillance technique: MSCPO

¾ Case study: ERD for respiratory diseases

¾ Can we go one step forward and anticipate disease outbreaks?
¾ Syndromic information
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UNIVARIATE SCENARIO: MODEL

)(~ ititit ePoy θ

eit :  expected counts of disease (background population effect) 

θit :  unknown area-specific relative risks

¾ Monitor a map of m small areas over T time periods

¾ Bayesian hierarchical Poisson count model

{ } Ttmiyit ,...,2,1;,...,2,1 ==
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UNIVARIATE SCENARIO: MODEL
Convolution model (Besag et al., 1991, Lawson, 2013)    vs     Spatio-temporal model (knorr-Held, 2000) 

ρ: overall level of the relative risk;

ui: spatially structured extra variation (improper CAR)  

vi: spatially unstructured extra variation;

δit: space-time interaction random effect; 
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¾We ran a simulation scenario (details in Corberán-Vallet and Lawson, 2011) to 
compare both models

¾ In terms of sensitivity, specificity and median time to detection, the convolution model
outperformed the spatio-temporal model

¾ In a surveillance context:

¾ The model must describe the behavior of disease under endemic conditions

¾ It must be sensitive to temporal changes in the RR pattern of disease. A too complex 
model may absorb changes in risk in the model fit

UNIVARIATE SCENARIO: MODEL
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UNIVARIATE SCENARIO: MODEL

¾ For seasonal data, in order to detect counts of disease higher than expected:

αs: seasonal effects

Is(t): indicator function that takes the value 1 if time t corresponds to month s

¾ Different risks to account for seasonality, but the risks so defined are constant over
time
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UNIVARIATE SCENARIO: SURVEILLANCE 
TECHNIQUE

Surveillance Conditional Predictive Ordinate (Corberán-Vallet and Lawson, 2011)

If SCPOit < α signal an alarm for area i
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UNIVARIATE SCENARIO: CASE STUDY

Number of counties signaling an
alarm at each time point during the
surveillance period (1996-2003).
Data for year 1995 used to estimate
the model.
Decision rule SCPO < 0.08

Monthly counts of Salmonellosis cases in SC 
(1995-2003)



UNIVARIATE SCENARIO: CASE STUDY

Spatial distribution of the SMR from
August to October 1996

Temporal plots for Greenville and 
Spartanburg counties

Red points represent alarms



MULTIVARIATE SCENARIO

¾ Surveillance systems are often focused on more than one disease within a 
predefined area

¾ A common approach is to monitor each disease separately: any correlation 
between diseases is ignored  

¾We present a multivariate extension of the proposed surveillance technique
that

¾ allows for correlation between diseases

¾ can detect outbreaks happening in either one or a combination of diseases
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MULTIVARIATE SCENARIO: MODEL

¾ A possibility to jointly model the endemic behavior of the multiple diseases is the shared
component model (knorr-Held and Best, 2001)

¾ For the joint analysis of k ≥ 2 diseases, Held el al. (2005) proposed a generalized SCM             
(only spatial information)

is a spatial field (CAR component)    

δj,k : relative contribution of wj to disease k                                     

nwj : number of relevant diseases for wj
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MULTIVARIATE SCENARIO: MODEL
Our shared component model formulation:

ρk : overall risk for disease k
L : number of spatial fields (CAR components) wl = (wl,1, wl,2,…, wl,m)
φl,k = 1 if wl has an influence on disease k, and φl,k = 0 otherwise

δl,k : weight
ψik : spatial unstructured extra variation for disease k

Advantage: By using indicator variables, we do not have to specify the structure of the model in advance         
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MULTIVARIATE SCENARIO: SURVEILLANCE
TECHNIQUE
For each small area i and time period t

counts higher than expected counts smaller than expected
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MULTIVARIATE SCENARIO: SURVEILLANCE
TECHNIQUE
A multivariate extension of the surveillance conditional predictive ordinate can be 
defined as (Corberán-Vallet, 2012)
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MULTIVARIATE SCENARIO: CASE STUDY
Weekly emergency room discharges for respiratory diseases in South Carolina in 
2009
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MULTIVARIATE SCENARIO: CASE STUDY

¾We confine our analysis to data collected from week beginning June 28 to 
week beginning December 27  (weeks 26 – 52 in previous figure)

¾ 46 counties, 27 time periods, and 5 diseases 

¾ Expected counts (constant) are calculated using the data from the first 3 weeks

¾ These data are also used to estimate the proposed SCM (we assume L = 10)             

¾ The estimated model contains 5 spatial fields

ISDS WEBINAR JULY 28TH 2016



MULTIVARIATE SCENARIO: CASE STUDY
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MULTIVARIATE SCENARIO: CASE STUDY
Goodness of fit: DIC (pD) for the proposed shared component model and five independent
convolution models

Model Disease 1 Disease 2 Disease 3 Disease 4 Disease 5 Total

Proposed SCM 808.18 268.04 578.84 657.64 652.43 2965.13

(39.85) (20.06) (32.07) (33.22) (32.27) (157.46)

Convolution models 810.30 268.24 584.29 659.17 656.17 2978.16

(40.80) (19.92) (33.88) (33.86) (32.62) (161.08)
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MULTIVARIATE SCENARIO: CASE STUDY

¾ For t = 4, 5,…, 27, the SCM is estimated using the data observed up to t-1

¾ MSCPO values associated with the new data are analyzed to detect epidemic 
onsets

¾ An alarm for the i th county is sounded at time t if the MSCPOit < 0.05

¾ Counts of disease detected as unusual are assumed to be missing when they 
become part of the history
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MULTIVARIATE SCENARIO: CASE STUDY



MULTIVARIATE SCENARIO: CASE STUDY

A comparison with the multivariate scan 
statistic: Counties where an outbreak is 
declared

Left: Areas signaling an alarm based on 
the MSCPO

Right: Most likely cluster (MLC) and 
secondary clusters (SC) using the Poisson-
based prospective space-time scan 
statistic
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MULTIVARIATE SCENARIO: A COMPARISON

¾ The space-time scan statistic pinpoints the general time and location of the most 
likely cluster (and possible secondary clusters)
¾ Drawbacks:

- Counties with no increased incidence can be included in the cluster
- Some counties do not undergo an outbreak of disease for all the diseases 

reported in the cluster
- Several large clusters covering practically all the study region are reported

¾ The MSCPO detects, at each time, counties with increased disease incidence and the 
diseases causing the alarm within each county   

¾ It enables a timelier and more informed response                          
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CAN WE ANTICIPATE DISEASE OUTBREAKS?

¾We have developed a model-based surveillance technique to detect
disease outbreaks as soon as possible

¾ But… can we predict disease outbreaks before they occur?

¾ The answer is based on the use of syndromic information

¾ However, we do not want to monitor syndromes or health-related data 
that precede diagnosis (these data can lead to false alarms)

¾We want to develop a multivariate model that models both the disease
of interest and syndromic information and helps to predict possible
outbreaks
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CAN WE ANTICIPATE DISEASE OUTBREAKS? A 
FIRST ATTEMPT
¾ The disease of interest is an infectious disease and we have information from a 
syndromic disease

endemic component: describes               epidemic component: expected
the pattern of disease during additive increase in disease counts
non-epidemic periods due to an epidemic

(depends on syndromic information)

)(~ ititit IPoy +µ We want a model like this for the
infection of interest
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CAN WE ANTICIPATE DISEASE OUTBREAKS? A 
FIRST ATTEMPT
yit: number of cases of the                   yit

s: number of cases of the
disease of interest                             syndromic disease

during non-epidemic conditions, the two diseases may be influenced by common 
confounding factors (Wang and Wall, 2003) . Here 

ititit e θµ =

iiit vu ++= ρθ )log(

s
it

s
it

s
it e θµ =

s
ii

ss
it vu ++= ψρθ )log(

),0(~ 2
ψσψ N

)(~ ititit IPoy +µ )(~ s
it

s
it

s
it IPoy +µ

ISDS WEBINAR JULY 28TH 2016



CAN WE ANTICIPATE DISEASE OUTBREAKS? A 
FIRST ATTEMPT
yit: number of cases of the                   yit

s: number of cases of the
disease of interest                             syndromic disease

Component based on data up to time t-1. At time t we can make predictions for time t+1
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CONCLUDING REMARKS

¾We have presented a Bayesian model-based surveillance technique for on-line 
spatio-temporal public health surveillance

¾ As a local measure, different alarms are sounded for those areas of increased
disease incidence

¾ It can be applied in any surveillance context where a model is used to describe 
the endemic behavior of diseases

¾ Simple spatial models are the key to allowing detection of change over time
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CONCLUDING REMARKS
¾ The technique can be easily extended for the monitoring of multiple diseases

¾ The proposed SCM allows us to identify the number of latent spatial fields required 
to describe the correlation across both areas and diseases

¾ The multivariate surveillance technique improves outbreak detection when changes in 
disease incidence happen simultaneously

¾ Finally, we have presented a model that incorporates syndromic information to 
predict the start of epidemics

¾ Some preliminary results obtained in a prospective analysis of infectious disease
data showed its good performance
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